NEC uPD78F0511 在线下载试验板

1. 引言

NEC uPD78F0511 是 78K0/KC2 44GB 微控制器的初学者试验板。它支持在线闪存编程和多达 32KB 的应用程序(基于 78K0/KC2 44GB 微控制器)的实时执行。

1.1 NEC uPD78F0511 在线下载试验板的主要特征

• 易于使用的器件示范功能

NEC uPD78F0511 在线下载试验板中包含一些组件,可以很方便地 演示简单的 LED 灯, 七段代码管, 蜂鸣器等 I/O 口操作。

• 通过 USB 接口供电

NEC uPD78F0511 在线下载试验板通过 USB 接口供电,不需要独立电源。

• PG-FPL3 闪存编程软件

可以通过基于闪存编程软件的窗口,选择和下载应用程序到 NEC uPD78F0511 在线下载试验板用干评测。

- 支持模拟信号到数字信号的转换
- 可以使用多种输入/输出信号

如:连接到用户硬件上的所有 I/0 端口、定时器输入/输出信号、使用 USB UART 芯片 FT232 的 UART 接口、连接到 LED 的 4 个 I/0 端口。

1.2 系统需求

主机: 汇编程序, C 编译器, 系统仿真器和闪存编程软件要求主机操作系统为 Windows 98SE, Windows Me, Windows 2000, or Windows XP., 需要 PII 400 MHz CPU, 128 MB 以上内存, 256 色显示 (800 × 600), 鼠标, CD-ROM 驱动和至少 90 MB 的空闲硬盘空间

主机接口: USB 接口,实现基于 USB (1.1 及以上版本)的通信。

2. uPD78F0511 在线下载试验板系统配置

NEC uPD78F0511 在线下载试验板系统配置如下图所示:

2.1 NEC uPD78F0511 在线下载试验板

NEC uPD78F0511 在线下载试验板是 NEC ELECTRONICS 78K0 系列学习板。uPD78F0511 微控制器是该系列中的一个典型器件。将 NEC uPD78F0511 在线下载试验板通过 USB 接口电缆连接到主机上。主机可用于 uPD78F0511 闪存的编程,并可以在 NEC uPD78F0511 在线下载试验板平台上执行应用程序。

2.2 主机

USB 主机接口可以实现与 NEC uPD78F0511 在线下载试验板的通信。使用 USB UART 芯片 FT232,应用程序可以与访问标准 RS232 接口一样,访问 USB 设备。

2.3 通过 USB 供电

NEC uPD78F0511 在线下载试验板通过 USB 接口供电,不需要独立的电源供应。USB 接口为面板提供 5V 电压。

3. uPD78F0511 在线下载试验板软件和硬件

这个初学者试验板由 NEC uPD78F0511 在线下载试验板和基于 Windows 的软件构成。要正确和有效的使用这个试验板,要求正确的 安装,和正确地配置软件与硬件。下列软件是这个配置包所需要的。

- RA78KO: Assembler, integrated development environment 这是基本语言工具包。汇编程序安装包包含整合开发环境(PM+)。即使使用 C 语言开发, 也必须安装此软件。
- CC78K0: C compiler 这个软件包用来执行用 C 语言开发的程序。
- SM+ for 78K0: System simulator 这个系统仿真器是一个软件,它可以在 PC 上模拟微控制器的操作。因此,在下载一个程序到目标器件前,可以检查微控制器的操作。
- DF78F0511: Device file 器件文件包含有微控制器的详细信息。这些信息在使用汇编程序, C编译器和系统仿真器时会用到。
- PG-FPL3: FLASH programming GUI 这是专用的编程软件,用来写此试验板中的 KC2 闪存。接下来讲解这些软件的安装过程。

4. 软件安装

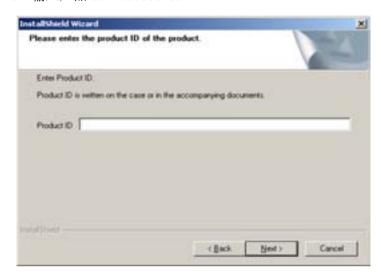

4.1 汇编程序和整合开发环境 PM+的安装

要安装包含有整合开发环境 PM+的汇编程序包,可以点击安装程序中 RA78K0 v380. exe 启动 RA78K0 安装程序。

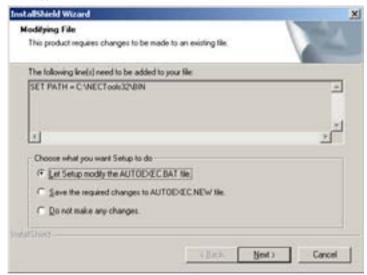
1. 双击 RA78KO_v380. exe


2. 出现该画面, 进行软件安装路径的选择和软件的检查选择

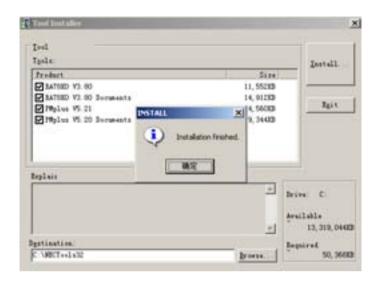
3. 单击"确定"



4. 单击 "Yes"



第 4 页


5. 输入产品 ID: 00008570S

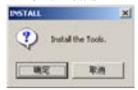
6. 选择 "NEXT"

7. 安装完成

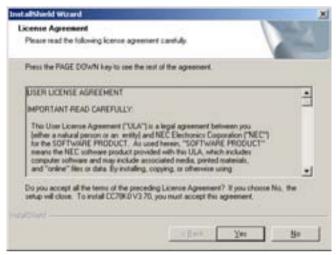

4.2 C 编译器的安装

要执行用 C 语言开发的程序,必须安装 C 编译器。点击安装程序中的 CC78K0 启动 CC78K0 安装程序。

1. 双击 cc78k0_v370



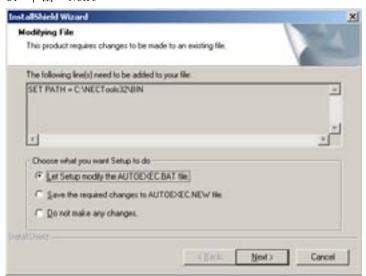
2. 出现该画面,进行软件安装路径的选择和软件的检查选择



第6页

3. 单击"确定"

4. 单击 "Yes"



5. 输入产品 ID: 00009933A



第 7 页

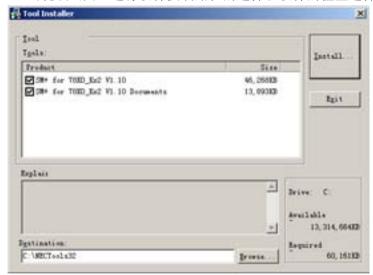
6. 单击 "Next"

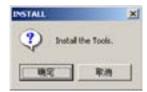
7. 安装成功

4.3 系统仿真器的安装

点击安装程序中的 SM780547-B_v110 启动 78K0S/Kx1+ 安装程序。

1. 点击进行解压缩


2. 确定解压缩存放路径,确定后,单击"Decompress"


3. 在解压缩的路径下双击该安装程序

4. 出现该画面,进行软件安装路径的选择和软件的检查选择

5. 单击"确定"

6. 单击 "Yes"

7. 输入产品 ID: 00001057R

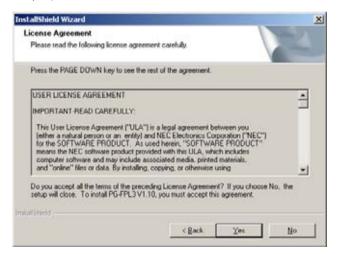
8. 安装完成

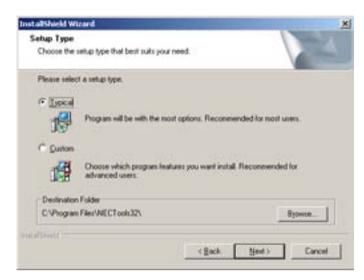
4.4 PG-FPL3 闪存编程 GUI 的安装

点击安装程序中的 PG-FPL3 启动 PG-FPL3 闪存编程 GUI 安装程序。

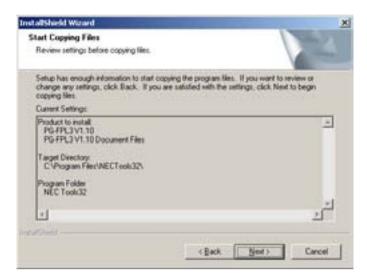
1. 双击

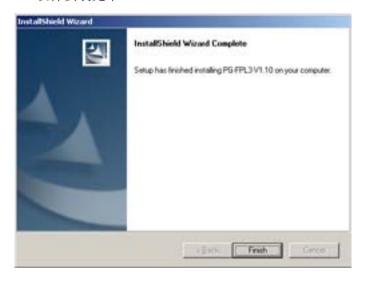
setup


2. 选择语言,建议选择为英语


3. 单击 "Next"

4. 单击 "Yes"


5. 选择 "Typical", 确定安装路径后, 单击 "Next"


6. 单击 "Next"

7. 单击 "Next"

8. 软件安装完毕

4.5 驱动安装

若要使用 NEC uPD78F0511 在线下载试验板,驱动必须被安装在主机上。

Windows 2000 环境下的安装

1. 插上实验板,系统会自动寻找 USB 设备

2. 单击"下一步"

3. 选择如图所示,单击"下一步"

4. 选择"指定一个位置", 然后单击"下一步"

5. 确定 USB 驱动路径,虽然在安装 PG-FPL3 软件时,安装目录下会生成个 Driver 的文件夹,但是,为了实验板的稳定性,建议使

用光碟里面的 Drivers 文件夹里面的 USB 驱动文件

6. 指定光碟里面的 Drivers 文件夹路径,如图。单击"打开"

7. 单击"确定"

8. 单击"下一步"

第 17 页

9. 驱动安装完毕(注:有两次安装,方法一样)

Windows XP 环境下的安装

第 18 页

1. 系统自动搜索到 USB 设备,选择"否,暂时不",单击"下一步

2. 选择"从列表或指定位置安装","下一步

3. 选择"在搜索中包括这个位置",浏览,选择 Drivers 文件夹

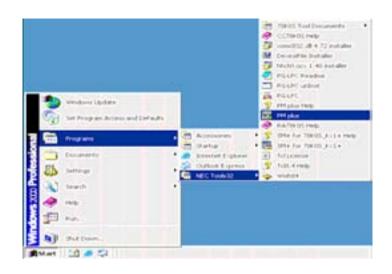
所在路径。"下一步"

4. 文件进行安装

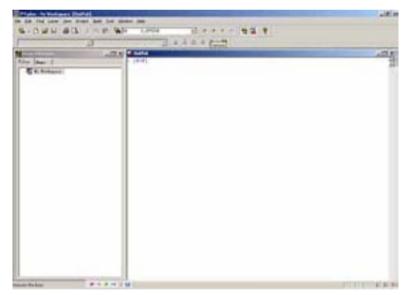
5. 安装完成

6. 会有两次安装,方法一样。

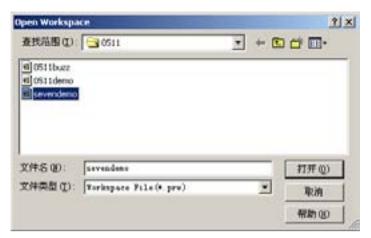
5. 整合开发环境 PM+和系统仿真器 SM+

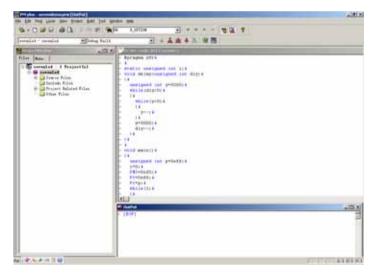

通过执行简单的程序,讲述用于 78K0 (以后用 SM+代替)的整合 开发环境 PM+和系统仿真器 SM+的基本操作。这章中假设的环境如下列所示。

所用的示例名: seven1


所用 workspace: sevendemo.prw

5.1 PM+的启动和编译

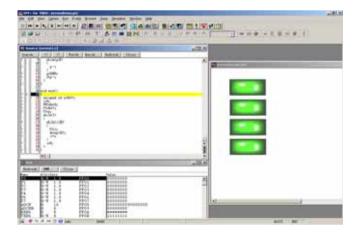

1. 启动 PM+。在正常的安装方法下,通过顺序点击 开始 - 程序 - NECTools32 - PMplus 可以启动 PM+。


2. 当 PM+ 启动,显示如图所示窗口。在折叠试菜单中点击 File - Open Workspace ,并打开工作区选择对话框。

3. 选择 sevendemo. prw 后点击"打开"

- 4. Project Window 中显示一列相关的文件和函数。点击一个文件或函数之后,这个文件或函数的描述就显示在 source window 中。要编辑程序,可直接在 source window 中编辑。
 - 5. 要编译和汇编,点击 (build icon)。

6.编译和汇编完成之后,显示"Build completed normally."。 点击 OK 按钮。如果有错误发生,会显示"A builderror was found."。 在这种情况下,纠正错误的信息在 Output 窗口中显示。

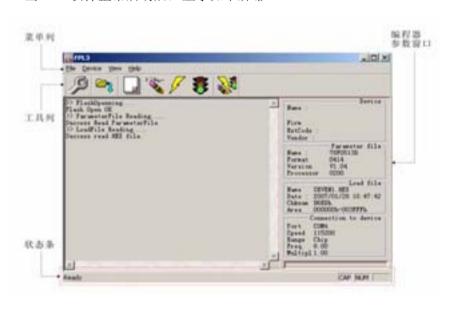


5.2 启动 SM+ 和仿真执行

1. 点击 PM+中的 Simulator Start Icon 启动 SM+

2. 启动 SM+后,显示如图所示的窗口。点击

第 24 页


- 3. 若要执行程序,点击 按钮。执行开始后, source window 中的指针可以指示出被执行中的源文件的位置。根据当前程序的执行, I/0 面板中显示模拟管脚和外围器件的操作。
- 4. 要暂停程序的执行,点击 按钮,若要按步执行,点击 按钮。
- * 关于 PM+和 SM+的细节,参见各产品的在线文档。

6 PG-FPL3 闪存编程软件

6.1 启动 GUI 软件

GUI 软件的启动

在开始菜单中选择 PG-FPL3. EXE , 启动 PG-FPL3 GUI 软件。 当 GUI 软件正常启动后,显示如下屏幕。

这窗口由如下项目组成:

48	至于信息	
業単列 (超示在領境)	显示 PO-LPC 可执行的荣单项	
工具別 (在業単列下)	以图标形式显示频繁使用的命令	
功亦日志宴口 (在工具刊下)	显示 PG4.PC 动作目志	
登院官口 (在場件日本室的右辺)	显示一条 PG-LPC 的汞入信息	
状态基	显示状态	

6.2 工具列

工具列中包含了用于启动 PG-FPL3 重要过程的按钮。

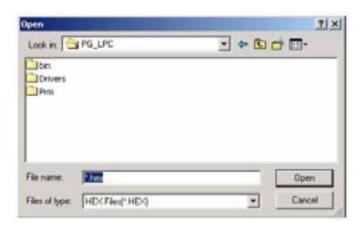
B	(Cevice) → (Setup) (4/8)	
	[Eie] → Qoad] 接租	
	[Device] → [Blank Check] 核相	
1000	[Device] → [Erase] 恢祖	
5	[Device] → [Program] [kill]	
2/18	[Device] → [∆utoprocedure(EPV)] ###	

6.3 菜单列

根据活动器件状态和器件类型,显示某些菜单项为'可用'或'禁用'。

1 [File] 菜单

点击[File]菜单,出现如下显示的下拉菜单。 该菜单主要包含与文件操作相关的命令。


第 26 页

(1) [Load] 命令

使用 [Load]命令可选择一个程序文件。通过执行 [Program]命令或 [Autoprocedure(EPV)]命令,写入

选中的程序于器件闪存中。

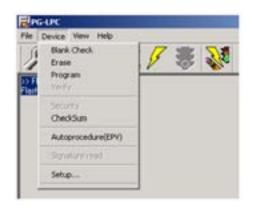
用于程序装载的文件选择窗口显示最近经常使用的目录,目录中包含已经装载的用户程序。用户程序被装载后,要进行校验和计算,并将结果显示在编程器参数窗口中。

[Open 按钮]

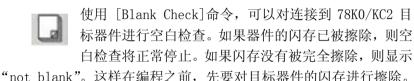
选择一个用户程序,写入目标器件中。

「Cancel 按钮]

不作选择, 关闭窗口。


(2) [Quit] 命令

[Quit]菜单是停止 PG-FPL3 GUI 软件的命令。点击任务条右边的 × 也可以停止 PG-FPL3 GUI 软件。


2 [Device] 菜单

点击[Device]菜单,出现如下显示的下拉菜单。

该菜单主要包含与编程操作(如空白检查、删除和对目标器件的 编程)相关的命令。

(1) 「Blank Check] 命令

(2) [Erase] 命令

使用 [Erase]命令可以擦除所连接的 78K0/KC2 器件的 闪存内容。当闪存被擦除时,活动录入窗口中会显示进程状态,以说明编程器的操作。T 选择 [Device] →

[Setup],显示高级标签,设置'Command options',执行[Blank Check] 命令,

然后执行 [Erase]命令。[Erase]命令执行完成后,GUI 软件将显示在目标器件上执行该命令产生的结果。

(3) [Program] 命令

执行[Program] 命令,可将指定的用户程序发送给目标器件,并写入闪存。

选择 [Device] → [Setup],显示高级标签,设置 'Command options',执行[Program]命令,然后执行校验操作,检测用户程序在从 PG-FPL3 到目标器件的通信过程中是否存在错误。在编程过程中,登录窗口中会显示进程状态,以说明编程器的操作。该进程状态显示窗口显示了目标器件编程的进程百分比。执行完

[Program]命令后,GUI 软件将显示在目标器件上执行该命令后产生的结果。

- (4) [Verify] 命令
- (5) [Security] 命令
- (6) 「Checksum」命令

[Checksum]命令用于读取与PG-FPL3 相连的78K0/KC2 器件的校验和。该值与主窗口的参数子窗口中显示的值不同。

(7) [Autoprocedure(EPV)] 命令

使用[Autoprocedure(EPV)] 命令,即依次执行[Erase] 命令和[Program] 命令。执行完[Autoprocedure(EPV)] 命令后,GUI 软件将显示在目标器件上执行该命令后产

生的结果。

- (8) [Signature read] 命令
- (9) [Setup] 命令

使用[Setup]菜单,用户可以根据用户环境进行闪存重写设置,并设置命令选项。每次启动GUI软件时,将读取最近使用的参数文件(.PRM),并显示设置内容。用

户可以使用[Setup]菜单修改设置项(不包括阴影属性的设置项)。

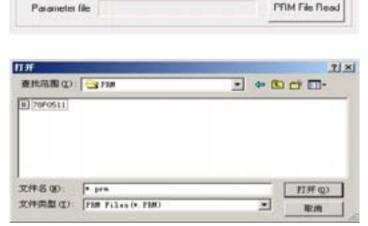
(a) 标准设置

该菜单用于设置重写目标器件闪存的环境。

与目标器件的通信模式、操作时钟等随所用的器件而变化。打开 如下窗口。

该窗口显示了所有基本选项,可根据用户环境和目标器件对这些 选项进行设置。

[OK 按钮]


点击 OK 按钮,保存'Standard'和'Advance'菜单中的设置, 关闭窗口。

[Cancel 按钮]

点击 Cancel 按钮,不保存'Standard'和'Advance'菜单中的设置,关闭窗口。

〈1〉参数文件

该文件中存放了重写目标器件闪存所需的参数和定时数据。由于 这些数据与重写数据的可靠性相关,因此不要修改参数文件。和校验 功能提供对参数文件的保护。

[PRM File Read 按钮]

显示参数文件选择窗口,选择所需要的文件,点击 Open。(注:请把光盘上面的 PRM 文件复制到 FPL3 的安装目录的 PRM 文件夹下)

〈2〉器件的通信接口

用于选择 NEC uPD78F0511 在线下载试验板与主机之间的通信通道。

[Port 列表框]

在 NEC uPD78F0511 在线下载试验板与主机之间选择一个通信通道。

[Speed 列表框]

选择通道的通信速率。

<3> 振荡器

使用'Supply oscillator'用来选择确定编程、数据发送和发送速率的时钟。

[Frequency 框]

设置目标系统的时钟频率。

操作频率的范围随使用的器件而变化。因此在进行频率设置之前,应检查所使用的器件要求。

[Multiply rate]

规定目标器件的分频率或倍增率。

如果目标器件具有内置 PLL 电路,则根据用户环境输入一个分频率或倍增率。

根据使用的器件不同,选择的分频率或倍增率会有所变化。

如果目标器件没有内置 PLL 电路, 选择"1.00"。

最初界面显示根据参数文件设置的默认值。

〈4〉操作模式

通过设置 'Operation Mode', 可将某些目标器件的闪存划分为

若干块或区域。该菜单用于选择闪存的一种操作模式。有些器件没有存储块或存储区的划分模式,有些器件仅有一种模式。这个设置中不存在的模式是不可选择的。

[选择 Chip]

目标器件的整个闪存区域将进行重写。

[选择 Block]

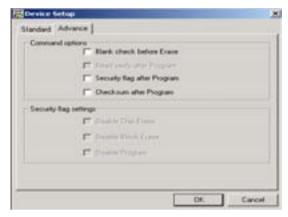
使用 Start/End, 规定需要重写的存储块的编号范围。

Start/End 列表框显示存储块编号,确定目标器件闪存的范围。 「选择 Area]

使用 Start/End, 规定需要重写的存储区的编号范围。

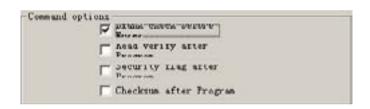
Start/End 列表框显示存储块编号,确定目标器件闪存的范围。

[Show Address 复选按钮]


确定在Start/End 列表框中显示编号还是地址。

如果选择该复选按钮,则显示地址。

如果不选择该复选按钮,则显示编号。


(b) 高级设置

Advance setup 菜单用来规定命令选项和安全标志设置。 点击 "Advance",显示如下窗口:

<1> Command options

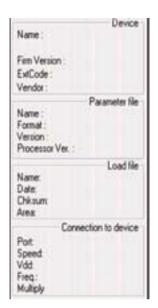
该对话框用于规定 PG-FPL3 闪存操作命令选项。

[Blank check before Erase 复选按钮]

如果选择该复选按钮,则在执行 Erase 命令或 EPV 命令之前,进行空白检查。

如果空白检查的结果显示 OK,则不进行擦除操作。

[Security flag after Program 复选按钮] 不使用


[Checksum after Program 复选按钮]

如果选中该复选按钮,则在 Program 命令和 EPV 命令执行后,从目标器件中读取目标器件闪存的校验和。

该值与主窗口的参数子窗口中显示的值不同。

6.4 编程器参数窗口

该窗口显示编程参数的设置。

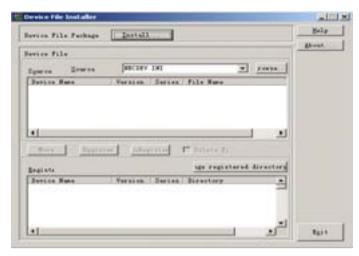
[Device]

显示与目标器件有关的信息,在与目标器件通信后,内容被更新。 [Parameter file]

显示与可读参数文件有关的信息,在执行[Setup]命令后,内容被更新。

[Load file]

选择与所选程序文件有关的信息,在执行[Load]命令后,内容被更新。

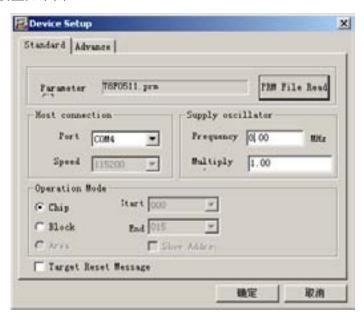

[Connection to device]

显示与目标器件连接有关的信息,在执行[Setup]命令后,内容被更新。

7.实验板的使用方法

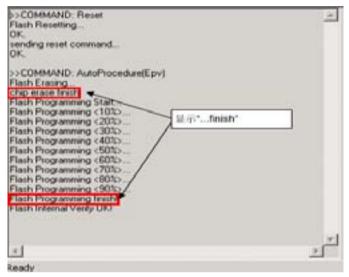
1 安装参数文件

<1> 单击, 开始-程序-NEC Tools32-Device File Installer

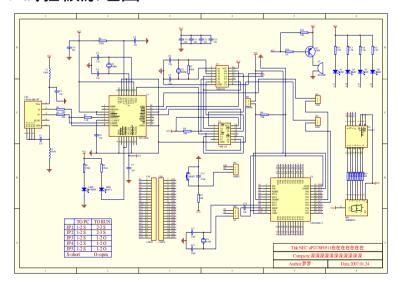

〈2〉单击 Brose,选择需要添加的参数文件所在文件夹,确定。

- <3> 选择 uPD78F0511-44, 单击 ________, 参数文件安装成功。
- 7.2 打开 PM Plus,载入工程,编译。(详细操作请查看前面章节)
- 7.3 把实验板上的跳线 JP1—JP5 跳至 TO PC 处,即 1,2 短路 (实

验板上有详细标识)


7.4 打开 PG-FPL3 软件,载入烧写参数文件,选择通信端口,具体设置如下图

注意:此处 Frequency 图 00 MHz 必须改成 8M,而不是开始默 认的 20M,否则烧写不能成功。


7.5 打开需要烧写的 HEX 文件(此文件在你所建的工程文件夹下)

7.7 完成后,断掉 USB,把跳线短接至 2—3(即 TO RUN),实验板开始工作。

8. 试验板原理图

第 37 页